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ABSTRACT

“> An existing gas-turbine engine has been selected and modified “on paper” to
accommodate an innovative, high-efficiency thermodynamic cycle. The modified Solar
5650 industrial gas turbine burns coal in an intercooled exhaust-heated cycle for power
generation. This thesis focuses on the alterations that must be made to this off-the-shelf
engine and their impact on the overall performance of the engine.

The conversion process involves optimizing the exhaust-heated cycle to obtain peak thermal
effic1ency and near-maximum specific power. Three design changes are explored to
optimize the intercooled exhaust-heated 5650 cycle. The alternatives include running the
intercooled exhaust-heated 5650 at a slower speed with no turbomachinery modifications,
running the engme at its design pressure ratio, or redesigning all of the turbomachinery.
Each of these options and a cycle modification, increased turbine-inlet temperature, are
measured on performance and life-cycle-cost bases. Sizing analysis for a rotary

regenerator heat exchanger and combustor recommendations for the cycle are also included. -

The results of this study indicate that the performance benefit gained by redesigning the
turbomachinery outweighs its extra initial capital cost. The other options analyzed are more
expensive to operate than the base 5650 unit. The increased turbine-inlet temperature
modification resulted in better performance and cost than any of the options. Running the
converted engined at its original design pressure ratio was also considerably attracuve due
to its lower capital costs. .
This thesis is one part of a three-part project sponsored by the U. S. Department of Energy
and supervised by MIT Professor David Gordon Wilson. The other two parts are the
preliminary design of an optimal or “blue-sky” exhaust-heated, coal-burning engine and the
cold coal-ash-fouling test of a rotary regenerator.

Thesis Supervisor: David Gordon Wilson, Professor of Mechanical Engineering

Thesis Reader: A. Douglas Carmichael, Professor of Ocean Engineering
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NOMENCLATURE
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This chapter presents a description of the topic objective and background including an
overview of previous research as well as a brief historical perspective. Proposed cycles for
coal bumning in gas turbines are presented with a final discussion on the advantages of the
exhaust-heated cycle.

1.1 Objective

This thesis focuses on the modifications necessary to convert an existing gas turbine to
an intercooled exhaust-heated, coal-burning engine and the resulting performance of the
modified engine. Although coal has been selected as the primary fuel for consideration, a
section on the possibilities of using biomass is also included. The engine chosen for
conversion is the 2.8 MW Solar 5650 industrial gas turbine. The conversion process
involves optimizing the intercooled exhaust-heated cycle to obtain peak thermal efficiency
and near-maximum specific power through the consideration of thiree design changes. The
alternatives include both running the intercooled exhaust-heated 5650 at design speed and at
a slower speed with no turbomachinery modifications, or redesigning all of the
turbomachinery. Each of these options and two cycle modifications are examined on a life-
cycle-cost basis. Previously developed methods of heat-exchanger sizing, centrifugal-
compressor design, turbine design, and performance prediction are used extensively to
arrive at the final results. The reader is encouraged to refer to cited references when
detailed explanations are desired.

This thesis is one part of a three-part project sponsored by the U. S. Department of
Energy (DOE contract # DE-AC21-89MC26051) and supervised by MIT Professor David
Gordon Wilson. The other two parts are the preliminary design of an optimal or “blue-
sky” exhaust-heated, coal-buming engine, and the cold coal-ash-fouling test of a rotary

regenerator.
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1.2 Background

Studies have been conducted since the 1930s to develop feasible coal-burning gas
turbines with the first prototypes used in German locomotives. After the introduction of
the first aircraft gas turbines, a project was started by the Locomotive Development
Committee (a consortium of six railroad and six coal companies) in 1944 to develop a coal-
burning gas turbine within the United States. The project concluded after a 1000-hour
endurance test revealed catastrophic turbine erosion [1]. The U.S. Bureau of mines and the
Australian Aeronautical Research Laboratories alsn attempted separate experiments in
burning uncleaned, unprocessed coal in gas turbines that ended with failure [2].

A more recent study conducted in 1982 by General Motors involved using a direct-fired
coal-buming gas turbine as a prime mover for a Cadillac Eldorado. This project was
moderately successful as the coal had been pulverized to an average size of 53 microns and
cleaned of ash and sulfur. Resulting thermal efficiency of the recuperated gas turbine was
quite favorable [2].

1982 is also a significant year because the increasing price gap between coal and other
forms of fossil fuels as well as projections of depleting petroleum resources prompted the
Department of Energy (DOE) to begin research in coal-buming heat engines [3]. Both
research in diesel and gas turbine engines was funded. There would be great advantages to
the development of new forms of coal-fired propulsion and power generation systems
which incorporate appropriate stringent pollution controls. Oil had accounted for 42
percent of the fuel consumed in the U.S. in 1988 and domestic oil production was at its
lowest point in 25 years for the first half of 1989 [4]. Also, the political instability of the
middle east and recent invasion of Kuwait by Iraq demands that conservation and the use
of other fuels must become a balanced portion of the U.S. strategy to decrease dependence
on imported oil.

The gas turbine has the advantages of compact size, potential low cost, and relative ease

of control over the Rankine and Diesel cycles which tend towards larger size and increased
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acquisition cost. These reasons combined with the abundance of coal reserves has made
the prospect of coal -fired gas turbines extremely attractive.
1.3 Direct-Fired Units

DOE has awarded contracts to General Electric (GE), Westinghouse, Allison Gas
Turbines, and Solar Turbines for the development of integrated coal-fired gas turbine
systems. These four corporations have concentrated their efforts on direct-fired units as
summarized in figure 1.1. Direct-fired units have combustion of the compressed air with
coal prior to entering the turbine. This cycle is essentially the simple gas turbine cycle and
is illustrated in figure 2.2. The air is first compressed in a compressor and then flows
through a slagging coal combustor which usually performs some type of hot-gas cleanup.
Products of combustion enter the expander or turbine directly, perform work, and are
rejected to a sink which may be the atmosphere or waste heat recovery system. Further

pollutant removal is necessary prior to leaving the stack.

vt System Description Exnaust

p—

9
Prim. impact Lean Finer
Solar Zone Sep. 2one Cleanup ™
Waterand| | Cycione
Sorbent Cleanup
)
a Prim, Quench Lean
au Zore | Zone ~  zone [ 7]
I J
[soroen |
Prin, impact Cycione Lean
0 | zone Sep. Cleanup Zone )
3
Clesnup

Figure 1.1 DOE/METC Sponsored System Descriptions [3]
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Variations of the direct-fired coal-buming cycle are similar to those incorporated in
industrial gas-tuibine engines to increase specific power, thermal efficiency or part-load
performance. These changes include the addition of recuperators or intercoolers. Changes
may also be made to the combustor and waste heat may be linked to a separate steam cycle
in order to utilize excess heat produced in the combustor [5].

The direct-fired units face problems, both technical and economic in nature. The coal
combustion process always results in ash and alkali-laden gas which can result in
particulate and chemical action on the turbine as well as pollution. Particulate matter has a
powerful erosive effect on the turbine blades and even if reduced to an acceptable size (5
microns for gas turbines), alkalinity of the combustion products still poses a problem [6].
Over periods of time, ash also tends to form deposits around the blades that have
deleterious aerodynamic effects on their performance [1,7].

The combustion process required for direct-fired units also increases in complexity
because it involves feeding and buming coal at higher than atmospheric pfessure. Past
experience of two reputable companies conducting research in this area has indicated that
uniform injection of dry micronized coal (DMC) into a pressurized combustor is a problem
not easily solved [3]. The Avco Research Laboratory/Textron is the only sponsored facility
which is currently advocating a slagging combustor which utilizes DMC pressurized to 6
atmospheres. Avco chose this combustion system based on the increased treatment costs
of using coal-water slurry (CWS) as the other DOE-sponsored activities have advocated
[6].

Solutions to some of the problems encountered by direct-fired coal-buming gas
turbines include: implementing various types of hot-gas cleanup, varying blade alloys to
gain the needed erosion resistance, designing appropriate acrodynamic blade profiles to
minimize the effects of solids in the airstream, experimenting with various sorbents within
the combustor to reduce the deposition rate of ash, and maintaining low blade-surface

temperatures to inhibit ash stickiness and agglomeration [8,9,10,11]. These proposed
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solutions do not always produce the predicted results due to an incomplete understanding
of coal ash deposition. Australian researchers utilizing native brown coal found that when
larger ash particles were removed with cyclone separators, ash deposition rates actually
rose in the blades by 70 percent [12]. Also, studies at DOE METC found that when ash
deposition was reduced the remaining deposited materials adhered much more strongly to
metal surfaces. The nature of coal-ash deposition must first be better understood before

direct-fired units become feasible and reliable enough for commercial use.

1.4 Indirect-Fired Units

The cycle which this thesis investigates and which currently receives less attention is
the indirect-fired gas turbine. This type of cycle is composed of both closed and exhaust-
heated cycles [8,13].

The indirect-fired closed-cycle gas turbine operates with the working fluid completely
separatéd from the products of combustion. Energy is transferred to the expander via some
type of highly effective heat exchanger. Figure 1.2 depicts the closed-cycle gas turbine.
The closed cycle avoids the problems of ash deposition associated with direct-fired cycles.
The working fluid is not restricted to air and may be pressurized which results in compact
engine components {14]. thermal efficiencies to 55 percent have been predicted but
operating units have attained efficiencies between 28 and 30 percent [15].

Because of the problems associated with ash deposition and fouling, closed-cycle
engines are presently the only available coal-fired gas turbines. These units have excellent
part-power efficiencies but design efficiency is dependent upon the heat transfer between
the high-pressure gas and the heat exchanger wall. Maximum temperatures are limited by
the working fluid’'s maximum temperature which is constrained by the present state of
technology to about 1100 K (1600 F). The increased complexity of these cycles as well as
a large additional heat-exchanger and gas cooler make these éngines less economically

attractive due to high initial capital investment.
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Figure 1.2 Closed-Cycle Coal-Burning Gas Turbine [16]

1.5 Indirect-Fired Exhaust-Heated Units

The exhaust-heated cycle involves transposing the combustor from its position after the
compressor in the simple direct-fired gas turbine to a location after the turbine. The entire
heat addition to the air entering the expander occurs through a heat exchanger. The cycle is
illustrated in figure 1.3.

The exhaust-heated cycle was first studied extensively from 1949 through 1957 by
Professor D. L. Mordell of McGill University. His preliminary analysis concluded that a
heat-exchanger effectiveness of at least 75 percent was necessary to make this cycle
attractive. The exhaust-heated cycle will yield the same specific power as a conventional

open-cycle gas turbine with the same temperature ratio, pressure ratio, and component

15




efficiencies. Thermal efficiencies for both cycles would be equivalent if the heat-exchanger

. effectiveness for the exhaust-heated cycle were 100 percent.

-—— BURNER
10 STack \/\/\/\/

HEAT EXCHANGER

MNANNS

/

TURBINE — POWER

INLET aIR

Figure 1.3 Exhaust-Heated Coal-Burning Gas Turbine [16]

Mordell's initial exhaust-heated test rig (figure 1.4) was constructed of a Rolls Royce
Dart gas turbine, a unique shell-and-tube heat-exchanger, and a slagging cyclone
combustor. He used a screw-type coal feeder to provide fuel-feed uniformity since the
combustor was operating at atmospheric pressure. The slagging combustor was well
suited for atmospheric conditions and for the high turbine-exit air temperatures. Although
dry-ash fouling of the heat-exchanger surfaces was not as critical as he first predicted, there
were some clogging problems associated with the combustor, large pressure losses in the
heat-exchanger, and corrosion due to sulfur condensation in the heat-exchanger tubes.
Mordell's experiments demonstrated that the exhaust-heated cycle is a feasible method of
burning coal in a gas turbine if heat-exchanger fouling can be limited and effectiveness

optimized [12].
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The advantages of this cycle combine those of both direct-fired and closed cycle units.
The products of combustion never pass through the turbine, air is used as the working
fluid, and the combustor operates at atmospheric pressure. The major concern regarding

ash deposition, erosion, and corrosion of the turbine blades is alleviated. The critical

\\,f'/" »

Figure 1.4 Mordell’s Exhaust-Heated Gas Turbine [12]
component now becomes the heat-exchanger rather than the turbine. Choice of a proper
heat exchanger should take into account capital cost as periodic replacement or cleaning will
be necessary. For this study, involving the conversion of a commercially available engine,
the rotating ceramic matrix was chosen for the exhaust-heated cycle. In the ceramic
regenerator shown in figure 1.5, the two streams, one of compressed air and the other
containing products of combustion, pass through the annular area of the matrix in
counterflow. The disk rotates and the matrix absorbs heat from the hot stream and

transfers it to the cold stream. This feature of rotation provides an interesting benefit in that
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the matrix tends to be "self cleaning.” As the matrix rotates, flow direction between the hot
and cold sides reverses and any dry deposits which may have formed as the hot exhaust
gases pass through in one direction should be dislodged when the compressed air from the
compressor flows in the opposite direction. Circumferential and radial seal on the surface
of the matrix prevent the streams of gas from mixing. The ceramic matrix was also chosen
because of its suitability for high temperatures in a low-pressure ratio cycle {17]. This type
of heat-exchanger has an effectiveness of over 0.95 as used in the Allison GT 404. An
effectiveness of 0.975 could be obtained on this engine if the current matrix thicknes: vere

doubled.

Figure 1.5 Rotating Ceramic-Matrix Regenerator [5]
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2.0 GAS-TURBINE CYCLES

This section discusses various types of gas turbine cycles and compares their overall
performance using specific power and thermal efficiency as primary parameters. Specific
power is the power output of the cycle normalized by the product of the mass flow rate,
specific-heat capacity and stagnation temperature at inlet. Thermal efficiency is defined as
the net power output of the cycle divided by the rate of energy addition during the
combustion process. These parameters will be used to explain performance comparisons
throughout this section. The advantages and reasons for choosing the intercooled exhaust-

heated cycle for this study will then be apparent.

2.1 The Simple Cycle

Most existing gas turbines use a simple direct-fired cyclg operating on a well refined
grade of petroleum based fuel. This simple cycle is independent on increasing turbine inlet
tempcra;ture (TIT) and pressure ratio in order to attain higher thermal efficiency and specific
power as shown in figure 2.1 [5]. This cycle is illustrated schematically in figure 2.2 and
is composed of a compressor, combustor and expander. Following the guidelines in
Wilson [5], the cycle can be referred to as a Compressor-Bumer-Expander (CBE) cycle.
In this type of nomenclature the symbols represent the following components:

C = Compressor
B = Heat addition from an external source (i.e. combustor or burner)
E = Expander (i.e. turbine or exhaust nozzle)

and appear in the order in which the components they represent are encountered by the
working fluid. In addition, the symbols

I = Intercooler
X = Exhaust-gas-to-compressed-air heat exchanger

will be needed later. The symbol X is used only in the expander-exhaust position even

though the working fluid passes through the heat exchanger twice.
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A temperature-entropy (T-s) diagram in figure 2.2 illustrates the various component
contributions to the simple-cycle. The pressure and temperature of the working fluid are
increased in the compressor (01-02). External heat is added at a relatively constant
pressure in the combustor (02-04). The turbine or expander extracts work from the high-
temperature-and-pressure gas (041-05). Energy in excess of that needed to drive the
compressor is then used for power generation or propulsion depending on the duty of the

turbine.
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Figure 2.1 Thermal Efficiency vs. Specific Power - CBE [18]
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In the simple cycle with a fixed TIT as pressure ratio is increased, exhaust temperature
is reduced. This reduction in wasted heat raises the thermal efficiency of the cycle. An
optimum pressure ratio for the simple cycle is reached when, for a given TIT, the benefits
of the reduced exhaust temperature are counteracted by the increased compressor power
needed to obtain the increased pressure ratio. This is shown in figure 2.1 where T is the
ratio of TIT to compressor inlet temperature and I is defined as the compressor pressure
ratio. Gains in performance for the simple cycle have focused on increasing TIT and

pressure ratio through the use of advanced materials, turbine blade cooling, and optimized
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compressor design. Part load performance of the simple cycle is poor due to the

dependence on operating at a high design point TIT.

2.2 The Recuperated Cycle

The recuperated or heat-exchanger cycle is a modification of the CBE cycle which seeks
to utilize waste heat in order to increase thermal efficiency. A recuperated-cycle gas turbine
consists of a compressor, combustor, expander and heat exchanger and is designated
CBEX. It is depicted schematically in figure 2.3. Since the heat exchanger extracts usable
heat from the exhaust, thermal efficiency is increased at lower pressure ratios as shown in

figure 3.1. Recuperation will be further discussed in chapter 3.
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2.3 The Intercooled Recuperated Cycle
As discussed previously, as pressure ratio is increased so does the work necessary to
drive the compressor. Power required to compress a working fluid is proportional to the
initial temperature; thus, if the working fluid can be cooled between stages of compression,
the overall power required for compression is reduced. The device which performs this,
called an intercooler, coupled with a heat exchanger to take advantage of turbine exhaust

waste heat, increases the overall thermal efficiency and specific power of the engine. This




‘ recuperated cycle or CICBEX cycle is shown in figure 2.5 and performance is depicted in
figure 2.6. Intercooling will be further discussed in chapter 3.
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Figure 2.6 Thermal Efficiency vs. Specific Power - CICBEX [18]

The intercooled exhaust-heated cycle is a slight variant of the intercooled recuperated
cycle in that the combustor has now been placed after the expander. The cycle is shown in
figure 2.6 with a T-s diagram and is designated CICXEB. For this study the rotary

regenerator (figure 2.7) will perform as the heat exchanger in the cycle.
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The specific-power curves for the CICBEX and CICXEB are similar with the only
difference in performance due to the transposition of the combustor which must now
transfer heat energy to the cycle via a heat-exchanger. In fact, performances would be
identical if the effectiveness of the heat-exchanger were 100% and all other component
efficiencies were the same. The advantage of this cycle is that the expander never
encounters the products of combustion so that fuel quality never becomes an issue for the
turbine. The choice of the ceramic rotary regenerator and low cycle pressure ratio ensures
maximized heat-exchanger effectiveness and minimized mass flow losses. Optimizing the

pressure ratio for this cycle will also be discussed in chapter 5.
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3.0 APPLICABLE TECHNOLOGIES AND DESIGN PHILOSOPHY

This chapter discusses in depth the advantages of recuperation, intercooling and
utilization of variable-area power-turbine nozzles in maximizing both design and part-load
performance. The integration of these technologies and maximized performance at
relatively low pressure ratios is the design philosophy of the commercial engine conversion

into the CICXEB cycle using coal as a primary fuel.

3.1 High-Efficiency Complex Systems

As the industrial use of the gas turbine has expanded, specific engine designs have
evolved which are not aero-derivative in nature. These designs have prioritized thermal
efficiency, part-load performance and specific fuel consumption. For industrial
applications, the compactness of the engine has been sacrificed in order to gain these
objectives. The general sizes for heat exchangers used for intercooling and heat
recuperation are often many times larger than the engine itself. These new-generation
engines of higher efficiency have several common characteristics.” They employ low
pressure ratios, high-effectiveness heat exchangers for heat "regeneration” and, possibly,
intercooling. These cycle alterations are compared in figure 3.1.

Recuperation of the heat in the exhaust gases of the gas turbine provides for a reduction
in the combustor temperature rise and thus a reduction in the amount of heat added to the
engine or reduced fuel requirements. Intercooling is the process of removing heat between
the stages of a multiple-stage compressor and results in less power utilized for operation of

the compressor.
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Figure 3.1 Effect of Technologies on Modern Gas Turbine Plants [20]

3.2 Recuperation

Recuperation is illustrated in figure 3.2. The shaded portion QR represents exhaust heat
that is normally rejected from the engine. The temperature at the end of the compression
process (point 2) is the limiting temperature at which heat is transferred into the the cycle.
The effectiveness of a recuperator is a measure of how efficient the heat exchanger is at
transferring this exhaust heat to the heat-addition portion of the cycle and thus replacing
fuel as a source of heat. From this diagram, effectiveness is defined mathematically as:

= Ta'TZ
€ T4-T2
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Therefore, if a heat exchanger could provide perfect recuperation, the temperature of the

working fluid entering the combustor at point "a" would be the same as the exhaust gas
temperature leaving the power turbine at point 4. Flow restrictions in the recuperator cause
pressure losses on both the "hot" and "cold” sides of the heat exchanger and result in a loss
in net work at all pressure ratios as compared with the simple cycle. Since the compression
process also increases the temperature of air, recuperation is possible only at compression
pressure ratios below the level at which the temperatures at the end of compression (point
2) and expansion (point 4) are equal. This optimum pressure ratio increases as the firing
temperature or TIT is increased [21].

Heat exchangers which are stationary are referred to as recuperators while those in
which the flow is periodic are called regenerators. Generally, higher effectiveness is
achieved by designing heat exchangers with greater heat-transfer areas. For the overall size
of the component to remain small, the hydraulic diameter of the passages within the heat
exchanger should also remain small [5]. Generally, increasing heat-transfer area also
increases the pressure losses within the heat exchanger due to greater flow restrictions.
Both the pressure drop and effectiveness must be considered in determining which type of
heat exchanger will result in maximum thermal efficiency for the cycle [23]. The cost of
the of the heat exchanger must also be weighed against the projected fuel savings during the
life cycle of the project. Adding heat regeneration to a cycle will increase thermal efficiency
but decrease the net work as compared to the baseline simple cycle. A regenerative cycle
also has the added advantage of better part-load performance due to increased heat-
exchanger effectiveness at part load operation. Figure 3.3 illustrates the variation of
thermal efficiency with power output for a hypothetical cycle with and without a heat
exchanger.This figure assumes a lossless heat exchanger but serves to illustrate the effects

of recuperation on a cycle.
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3.3 Intercooling

The process of intercooling is illustrated in figure 3.4 and is applicable only in cycles
that employ multi-stage compression and is performed between the stages of compression.
For simplicity it is illustrated for a two stage compression process. Heat is rejected to the
intercooler along the process denoted as "a-b". This heat rejection reduces the temperature

and increases density of the working fluid prior to it entering the next stage of
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compression and results in a reduction of work input to the second stage of compression
which is represented as a positive Q1 and added to the work output of the cycle [21].

In a gas turbine the compressor may be driven by a compressor (or gas-producer)
turbine as in a split-shaft arrangement similar to the GE LM2500. In a single shaft
configuration, like the Allison 501-K, a single turbine provides compressor power as well
as shaft power. In either case compressor work is not useful work and reduces the amount
of energy that may be extracted from the cycle for shaft power. Pressure losses in ducting
between the stages that lead to the intercooler are also a consideration for axial-flow
compressors whereas intercooler-ducting losses in a centrifugal compressor may be
minimized due to the radial-inward-outward flow between the stages which is more
accommodating to this modification. Intercooling is particularly attractive for marine
applications as there is an unlimited source of cooling fluid for the intercooler.

Intercooling results in a reduction in compressor work and, therefore, an increase in net
work output as well as an increase in thermal efficiency. The increase in efficiency is small
at lower pressure ratios and grows continuously as pressure ratio is increased because more

heat is available for removal by the intercooler.

3.4 Combining Intercooling and Recuperation

Figure 3.5 illustrates the combined effects of recuperation and intercooling. These two
technologies are complementary in that the reduced temperature at the end of compression
(T'2 versus T2) provides a larger temperature differential for heat transfer from the exhaust
gases. AQr represents this substantial increase to the heat transferrable from the exhaust
over the non-intercooled recuperated cycle. This results in an increased thermal efficiency
in addition to the increase provided by the reduction in necessary compressor work due to
intercooling alone. The optimum pressure ratio at maximum thermal efficiency is increased
in addition to the increase provided by the reduction in necessary compressor work due to

intercooling alone. The optimum pressure ratio at maximum thermal efficiency is increased
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over the non-intercooled rccuperated cycle and, in fact, the recuperation of gas-turbine
engines of high pressure ratio is feasible only in conjunction with intercooling because of

the low turbine-outlet temperatures.

3.5 Optimum Pressure Ratios

When looking at the preliminary design of a recuperated or intercooled- recuperated gas-
turbine engine the priorities placed on maximum thermal efficiency or specific work may
drive the final design point of the cycle. For maximum efficiency the recuperated engine
would be designed at a slightly lower pressure ratio than a similar intercooled-recuperated
cycle. In a previous study by Wilson [17] which employed a ceramic rotary regenerator,
the optimum pressure ratio for the regenerative cycle was found to be approximately 3:1
and that for the intercooled-regenerative engine was approximately 4:1. These values were
determined for maximum efficiency. With any design the particular characteristics of the

heat exchangers may determine a limiting pressure ratio based on component losses.
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3.6 Variable-Area Power-Turbine Nozzles

As stated previously, one of the disadvantages of the simple cycle is part-load
performance. Intercooling and recuperation, in combination, greatly improve part and full-
load performance.Another current technology, variable-area power-turbine nozzles,
specifically enhance part-load performance. For the simple cycle, thermal efficiency was
dependent upon TIT and the basic cause for poor part-load performance is the rapid drop of
TIT with decreasing power. As shown in figure 3.3, recuperation greatly enhances the part
and full-load thermal efficiency of the simple cycle, but the curve is shifted only vertically
and the basic shape remains the same. This diagram assumes a constant effectiveness for a
lossless heat exchanger at all loads but in fact part-load performance of a heat exchanger is
often slightly better than at design point. Maintaining a maximum TIT throughout the
operating range of the engine is, then, the desired goal and the major objective of the
variable nozzles.

Variation of throat area is performed by turbine nozzles that rotate about an axis (figure
3.6) [24]). When the load on a split-shaft gas turbine is reduced below its maximum-
efficiency rating, the mass flow of the working fluid is reduced because of a reduction in
compressor speed. In a standard fixed-geometry engine the TIT is reduced and, therefore,
thermal efficiency. If flow capacity can be altered for the power turbine at various loadings
then TIT and efficiency can be maintained as high as possible during part-load operation.
Variable turbine nozzles would decrease the the throat area of the power turbine resulting in
an increase of the overall fraction of the combined expansion pressure ratio. This would
then control the pressure ratio across the compressor turbine and allow for the higher
desired TIT for the power turbine because of a smallér temperature drop across the
compressor turbine. The combined expansion ratio of the turbines is explained in the

equation on the following page.
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Rexp=Tct Ipt =R (1-Ap/p) Ty (pressure ratio of compressor turbine
Xp p p p
Tpe: pressure ratio of power turbine
Rexp: pressure ratio of expansion
Rcomp: pressure ratio of compressor

Ap/p: total engine pressure losses

If the power turbine pressure ratio is increased then the compressor turbine pressure
ratio decreases resulting in a TIT which is maintained at a maximum over all operating
conditions. This effect is shown in figure 3.7 and depicts the extent to which compressor
speed may be reduced without degrading TIT. This is very much dependent on the
compressor surge characteristics [25]. Another benefit of operating near the compressor
surge line is the likelihood of an increase of compressor efficiency. Both of these effects
will improve part load performance. Variable nozzles also tend to degrade power turbine
efficiency at design speeds but it has been shown that this loss in component efficiency can
be more than offset by maintaining a higher TIT at part load with area variations ranging

from +20% to -20% [26].
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4.0 ENGINE SELECTION
The engine chosen for conversion is the Solar 5650 industrial gas turbine. This section

documents the engine-selection process as well as the engine features and performance.

4.1 The Selection Process
Several criteria were established to narrow down the number of candidate engines to a
manageable size. The criteria are based on requirements used to size the “blue-sky” engine

[16] and minimize the conversion expense . The criteria are:

1. the power output must be approximately 2 MW,

2. the turbine-inlet temperature should be about 1300 K for high thermal efficiency
with low ash stickiness,

3. performance and relevant design information must be readily available,
4. a low-pressure-ratio cycle is preferred,

5. a two-stage centrifugal compressor would facilitate intercooling, and
6. the engine must be developed or in production.

The matrix of candidate engines and their basic features shown in Table 4.1 was created
from [27] and [28]. Numerous other engines were eliminated from consideration for
various reasons. The Solar 5650 emerged as the clear choice for conversion to an exhaust-
heated, coal-buming engine since few production engines are specifically designed for
industrial, low-pressure-ratio operation. Although Solar was reluctant to provide design
and performance details, several non-proprietary reports were discovered to contain all the

relevant information needed to carry out this preliminary design study.
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Table 4.1 Candidate Gas Turbines [27, 28]

Manufacturer Output PR Flow T.IT. nth Speed

Model kW) kg/s) (K) (%) (RPM)
AVCO-Lyvcoming

TF25 1865 6.9 9.6 -~ 23 14500
Ruston

TA2500 1865 5.1 129 1124 21.2 7950
IHI

M 1004G 1110 8.4 6.4 1018 23 19500
Kawasaki

MI1A-03 1470 9.2 9.1 - 20.1 22000
Dresser-Rand

KG2 1550 4 13.1 1100 16.7 18100
Solar Gas Turbine

Centaur 2945 9.0 17.3 1150 25 15700
5650 2768 6.5 17.2 17241 335 10620
Yanmar

AT270C 2400 8.1 15.4 1173 - 1800
Pratt & Whitney

SPW 124 1790 13.7 7.7 - --- 20000
General Electric

LMS00 3730 -— 15 - -— 7000

4.2 The Solar 5650 Features

The Solar 5650 industrial gas turbine has been in development for twenty years. Solar
and its parent company, Caterpillar Tractor, designed the 5650 to compete with large diesel
engines. It was a proposed replacement for the less-efficient Allison 501-K currently used
aboard U. S. Navy ships as a generator set. Although the 5650 is not in full-scale
production, several pilot sites currently use the 5650 for full-or part-time power generation

(see figure 4.1) [29].
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Figure 4.1 Solar 5650 Industrial Gas Turbine [18]

The 5650 is a twin-shaft, low-pressure-ratio, recuperated gas turbine with several
unique features. The overall dimensions of the engine are listed in Table 4.2. The modular
engine components consist of a primary-surface recuperator, two-stage centrifugal
compressor, annular combustor, single-stage, air-cooled gas-producer turbine and a single-
stage power turbine with variable inlet vanes (see figure 4.2). The modular primary-
surface folded-sheet-metal recuperator is the most innovative feature. The elements of the
high-effectiveness recuperator can slide relative to each other thus avoiding thermal stress
and strain. Unfortunately, this engine component cannot economically be used in the
exhaust-heated design due to inaccessibility for cleaning after fouling,. The variable-area
power-turbine nozzle allows quick load response and high part-power thermal efficiency
for reasons discussed in section 3.6. The turbine-inlet temperature is hot enough to attain
high thermal efficiency yet low enough to reduce ash stickiness in the regenerator. The
manufacturer claims that with improved turbine-blade cooling the 5650 is capable of a 98
degrees K increase in turbine-inlet temperature while still meeting the 100,000-hour design

life [29].
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Figure 4.2 Solar 5650 Engine Cross-Section [30]
Table 4.2 Engine Dimensions [30]
Physical Dimensi Engine Engine Including Base
Length (m) 2.896 3.659
Width (m) 1.930 2.090
Height (m) 2.235 2.730
Weight (kg) 7264 10215

4.3 Solar 5650 Performance

Several sources of quoted design-point performance of the Solar 5650 appear to be in
conflict [21,24,29,30]. The minor inconsistencies are attributed to the fact that the 5650 is
currently not in production and is constantly undergoing new performance evaluations.

The engine performance in Table 4.3 is believed to be from the most recent testing.
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Table 4.3 Base Solar 5650 Design-Point Performance (sea-level, 288 K)
[21,24,29,30]

Thermal Efficiency (%) 335
Power Output (kW) 2768
Specific Fuel Consumption (kW/kg-hr) 0.2506
Mass Flow (kg/s) 17.22
Compressor Pressure Ratio 6.37
Compressor Speed (RPM) 13100
Turbine-Inlet Temperature (K) 1241.3
Power-Turbine Speed (RPM) 10620
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5.0 ENGINE CONVERSION
The engine cycle analysis and three design options to achieve the optimal-cycle

performance with the intercooled base Solar 5650 are presented in this section.

5.1 Analysis Overview
The analytical procedure to modify the intercooled base Solar 5650 to an intercooled
exhaust-heated, coal-buming engine consists of two primary tasks: cycle analysis and
turbomachinery preliminary design. The cycle analysis determines the overall performance
of the modified engine and sets the thermodynamic requirements to which the
turbomachinery must be designed. A brief summary of the steps followed to carry out
these tasks is included here. A detailed explanation of each step is given in later sub-
sections.
1. The predicted design-point performance of the intercooled 5650 was
matched with the performance calculated by cycle-analysis computer
pI: grams.

2. The design-point cycle-analysis computer program was modified to simulate
the intercooled exhaust-heated, coal-burning Solar 5650 engine.

3. The optimal compressor pressure ratio for the intercooled, exhaust-heated,
coal-burning Solar 5650 was determined.

4. Three alternatives to achieve optimal performance for the intercooled,
exhaust-heated 5650 were examined. The options are:

a. run the modified engine at its baseline pressure ratio,

b. design all-new turbomachinery and run at an optimized pressure ratio, or
¢. make no turbomachinery modifications, just decrease engine speed.

The merits of each of the various options listed above are judged on an overall life-
cycle-cost basis. It is important to note that Solar's intercooled version of the 5650 engine
did not alter the turbomachinery in any way except for the addition of intercooling between
the stages of the two-stage centrifugal compressor. The capital cost of the converted engine
is minimized by purposely holding the turbine-inlet temperature and mass flow close to the
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intercooled base 5650 levels. This ensures that the redesigned turbomachinery will remain
at approximately the same size and shape as the base 5650 turbomachinery. The power
output, engine life, engine bearings and accessories will also remain nearly constant.
Performance and cost of components used to provide intercooling were tékcn from
Karstensen [20].

The preliminary design of an adequate combustor and engine controi system is
considered beyond the scope of this report. A promising coal-buming-combustor
technology is in development (slagging, two-stage combustors) and is assumed acceptable
for the dry-micronized coal to be bumed in this engine and is briefly discussed in a later
section. Similarly, acromechanical and stress analysis of the redesigned turbomachinery is

regarded as too detailed for the purposes of this feasibility study.

5.2 Base Solar 5650 Perforl;lance Data-Match

The data-match of the predicted intercooled 5650 design-point performance served as
the stepping stone from which the performance of the exhaust-heated, coal-buming engine
was extrapolated. The CYCLE computer program written by Tampe [16] for the “blue-
sky” design was modified to represent the recuperated cycle of the intercooled Solar 5650 .
The intercooled 5650 mass flow, compressor-pressure ratio, component efficiencies,
cooling flows and duct losses were entered into the computer model. Mechaniczl losses
and fuel properties were adjusted to match the measured performance. Polytropic
component efficiencies, pressure and mass losses, remained the same for the model.
Power turbine shaft losses were assumed to be 1.5% to provide an accurate match. The
combustor efficiency was adjusted to 95% and appears unreasonably 'ow but this value
was also reported by Solar for the base 5650 engine [30]. Ducting and interstage pressure
losses occurring in the compressor due to intercooling were assumed to be the same value
as predicted by Karstensen [21]. Table 3.1 compares the predicted base intercooled 5650

cycle parameters to the parameters used in the data match. Due to the simplicity of the
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computer model, the effectiveness of the recuperator was lowered slightly from the

reported data in order to provide a consistent match. The compressor and turbine

efficiencies listed in the table are polytropic.

Table 5.1

Compressor 1st Stage
Efficiency (%)
Pressure Ratio
Mass Flow (kg/s)

Intercooler
Effectiveness

AP (%)

Interstage AP (%)
Compressor 2nd Stage
Efficiency (%)
Pressure Ratio
Mass Flow (kg/s)
Recuperator
Effectiveness

Cold-Side AP (%)

Hot-Side AP (%)
Combustor

AP (%)

Efficiency (%)
Gas-Producer Turbine

Cooling Flow (% WAL1)

Efficiency (%)

Duct Pressure Loss (%)
Power Turbine

Cooling Flow (% WAI)

Efficiency (%)

Duct Pressure Loss (%)
Power Output Module

Shaft Losses (%)
Fuel-Heating Value (kJ/kg)

IC Solar Data [21]

84.1
2.81
18.77

902
4
3.61

79.6
2.59
18.77

0.887
3.53
6.29

4.3
100.7

2.5
87.9
1.97

0.8
86.9
6.0

1-3
unknown

Intercooled Base 5650 Design-Point Cycle Parameters

IC Base 5650 Model

84.1
2.78
18.77

902
4
3.61

79.6
2.56
18.77

0.865
3.53
6.29

4.3
95 [30]

2.5
87.9
1.97

0.8
86.9
6.0

1.5
42700

The comparison of overall performance is shown in Table 5.2, Excellent agreement

was reached between the data predicted by Solar and model-calculated engine performance.
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Table 5.2 Overall Performance
Intercooled Model vs. Predicted Intercooled Data

IC Solar Data [20] IC Base 5650 Model
Thermal Efficiency (%) 36.3 36.6
Power Output (kW) 3520 3520
Specific Power .647 .647
Specific Fuel Consumption .2317 2312

(kg/kxW-hr)

Table 5.3 show a breakdown of the measured and calculated component performances.
There are some subtle differences in component temperatures but this reflects the limitations
of the computer model. In general, the individual component performance for the

intercooled base engine is reasonably matched.
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Table 5.3 Component Performance
Intercooled Model vs. Predicted Intercooled Data

IC Solar Data [20] IC _E:se 5650 Model
Inlet Exit Inlet Exit
Compressor
Temp. (K) 288.0 439.3 288.0 436.9
Flow (kg/s) 18.77 18.77 18.77 18.77
Pressure (kPa) 101.3 705.1 101.3 719.2
Recuperator
Cold Side
Temp. (K) 439.3 799.3 436.9 799.3
Combustor
Temp. (K) 799.3 12447 799.3 1241.3
Flow (kg/s) 18.07 18.30 18.08 18.38
Gas-Producer
Turbine
Temp. (K) 1241.3 10259 1241.3 1023.8
Flow (kg/s) 18.39 18.39 18.38 18.85
Power Turbine
Temp. (K) 1012.6 848.2 1013.6 855.9
Flow (kg/s) 18.84 18.84 18.85 19.00
Recuperator
Hot Side
Temp. (K) 844.8 512.6 855.9 502.0

An accurate design-point computer representation of the intercooled base Solar 5650

has been created to facilitate the performance prediction of the converted engine.

5.3 [Exhaust-Heated Solar 5650 Cycle Performance Prediction

The intercooled base 5650 computer model provided a known foundation to which
alterations could now be made to produce a model of the intercooled, exhaust-heated, coal-
buming engine. The combustor was extracted from its original position between the
recuperator exit and gas-producer-turbine inlet and a new slagging combustor was placed

after the power turbine. The primary-surface recuperator was removed {rom the cycle and
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replaced with a ceramic rotary regenerator. Rotary-regenerator-sizing and performance
logic was added to the program .

The regenerator-sizing procedure is outlined in Wilson [5] and detailed performance
equations are derived in Hagler [19]. The algorithms were developed and programmed by
Tampe [16] for the “blue-sky” design. The surface geometry of the ceramic-regenerator
matrix chosen for this exhaust-heated application is summarized in Table 5.4. The
programs developed for the intercooled, exhaust-heated, cycle are similar to those

developed with Nahatis [31] for the non-intercooled, exhaust-heated cycle.

Table 5.4 Ceramic Matrix Surface Geometry [5]

Stanford Univ. Core Number 503A
Passage Count (No./in?) 1008
Hydraulic Diameter (microns) 511
Area Density (m?/m3) 5551
Porosity 0.708
Solid Density (kg/m?) 2259

The 503A matrix was selected based on sensitivity studies conducted by Tampe [16].
More recent information indicates that a matrix with a larger hydraulic diameter would
decrease susceptibility to deposition and reduce the axial temperature gradient.v A later
section will compare the sizing changes necessary for cores with different hydraulic
diameters. For all cases the effectiveness of the regenerator is selected to be 0.975. Figure
5.1 illustrates a scaled drawing of a probable engine cross-section which shows diameters
and thicknesses for the S03A matrix. If a matrix with a larger hydraulic diameter had been
chosen, the thickness would have been larger. The regenerator dimensions and design-
point performance as calculated in the computer model are shown in Table 5.5. Two
medium-sized regenerators are used rather than one large regenerator or many small

regenerators.
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Table 5.5 Regenerator Dimensions and Performance
Intercooled Exhaust-Heated 5650 Model

Number of Disks 2
Core Type 503A
Effectiveness 0.975
Cycle Pressure Ratio 7.10
Diam. of Each Disk (m) 3.5198
Thickness of Each Disk (m) 0.1386
Mass of Each Disk (kg) 853.7
Rotational Speed (RPM) 1.74
Power Consumption (kW) 11.62
Total Radial Seal Leakage 3.22
(% WAL)

Total Circumf. Seal Leakage 1.41
(% WAL)

Cold Side

Pressure drop (%) 17
Heat-transfer area (m?) 1467.9
Free-face area (m?) 1.351
Face area (m?) . 1.908
Hot Side

Pressure drop (%) 3.11
Heat-transfer area (m?2) 4280.3
Free-face area (m?) 3.940
Face area (m2) 5.565

The component losses and efficiencies in the exhaust-heated, coal-burning 5650 model
were assumed the same as those presented in the base 5650 model with a few noted
exceptions. The recuperator pressure losses were eliminated and replaced with the
calculated regenerator pressure losses. The additional ducting traveling to and from the two
regenerators was assumed to add a 2.0 % pressure loss to the cycle and the efficiency of
the slagging combustor was set at 95% [2]. The fuel-heating value was lowered to 34262
kJ/kg to simulate the energy available in West Virginia, low-volatility-bituminous coal.
The ultimate analysis of the coal in Table 5.6 shows that this coal has a relatively low (4%)

ash content.
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Table 5.6 Coal Ultimate Analysis [16]

Species Moisture C H S Q N Ash
% wt. 2.7 84.7 4.3 0.6 2.2 1.5 4.0

The overall predicted design-point performance of the intercooled, exhaust-heated, coal-
burmning 5650 engine is compared to the intercooled base 5650 in Table 5.7. The smalil
performance penalty in converting from one configuration to the other is due to the
regenerator leakages and the sub-optimal compressor pressure ratio. The relative life-cycle
cost of this conversion will be examined later.

Table 5.7 Overall Performance Comparison
Intercooled Base Model vs. Intercooled Exhaust-Heated Model

IC Base 5650 Model IC Exhaust-Heated 5650
Model
Thermal Efficiency (%) 36.6 35.8
Power Output (kW) 3520 3257
Specific Power .647 .599
Specific Fuel Consumption .2312 .2938

(kg/kW-hr)

The component performance of the exhaust-heated model versus the base model is
shown in Table 5.8 . Note that “heat exchanger” in the tables denotes the recuperator for
the intercooled base 5650 and the rotary regenerator for the intercooled, exhaust-heated

5650. The component performance reflects the physical changes made to the base 5650.

53




Table 5.8  Component Performance
Intercooled Base Model vs. Intercooled Exhaust-Heated Model

IC Base 5650 Model IC Exhaust-Heated 5650 Model
Inlet Exit

Compressor
Temp. (K) 288.0 436.9 288.0 436.9
Flow (kg/s) 18.77 18.77 18.77 18.77
Pressure (kPa) 101.3 719.2 101.3 719.2
Heat-exchanger
Cold Side
Temp. (K) 436.9 799.3 436.9 12443
Combustor
Temp. (K) 799.3 12413 851.5 1265.0
Flow (kg/s) 18.08 18.38 17.93 18.18
Gas-Producer
Turbine
Temp. (K) 1241.3 1023.8 1244 .3 1017.0
Flow (kg/s) 18.38 18.85 17.31 17.78
Pressure (kPa) 636.5 261.0 689.36 2714
Power Turbine
Temp. (K) 1013.6 8559 1007.0 851.5
Flow (kg/s) 18.85 19.00 17.78 17.93
Pressure (kPa) 255.8 119.0 266.05 124.6
Heat-Exchanger
Hot Side
Temp. (K) 855.9 502.0 1265.0 4834

The proposed conversion from the intercooled base 5650 to the exhaust-heated, coal-

buming 5650 engine modeled above and shown in figure 5.1 would consist of five basic

steps:

1. remove the existing annular combustor and insert smooth ducting in its place;
2. remove the primary-surface recuperator;
3. insert two ceramic rotary regenerators in parallel between the compressor and

gas-producer turbine;
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4. connect the inlet of a slagging combustor to the power-turbine exhaust and
the outlet of the combustor to the rotary regenerator hot-side inlets; and

5. duct the compressor-exit air into the regenerator cold-side.

The overall performance of the intercooled, exhaust-heated 5650 shown in Table 5.7
may be improved by optimizing the compressor-pressure ratio. The data in the table are
calculated at the intercooled base 5650 design point. A new, optimized design point for

the exhaust-heated 5650 model must now be derived.
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5.4 Optimal Intercooled Exhaust-Heated 5650 Cycle Pressure Ratio

The optimal cycle pressure ratio occurs between the points where thermal efficiency and
specific power are near their peak values. These parameters cannot be maximized
simultaneously, but they can be optimized approximately by constructing a curve of thermal
efficiency versus specific power and choosing the pressure ratio at which the percentage
decrease in thermal efficiency is greater than the percentage increase in specific power? .
Each point on this curve represents the design point of a different engine, but each engine
has the same turbine-inlet temperature and mass flow rate. The engine component
efficiencies change slightly with pressure ratio according to the relationships defined in
Wilson [5]. The plot of thermal efficiency versus specific power were constructed using
the intercooled exhaust-heated 5650 computer model (see figure 5.2 ). The optimal
pressure ratio for the intercooled exhaust-heated cycle was chosen as 4.5 while the optimal
pressure ratio for the non-intercooled exhaust-heated cycle was chosen in a previous study
done by Nahatis [31] as 4.0. The overall performance of the optimal cycle is compared to
the original intercooled, exhaust-heated 5650 cycle in Table 5.9. The component
performance of the optimal cycle is shown in Table 5.10. Regenerator size is listed in

Table 5.11. |

2A rigorous optimization would require calculation of the life-cycle costs over a range of pressure ratios.
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Table 5.9 Overall Performance Comparison
Intercooled Exhaust-Heated Model vs. Optimal Intercooled Model

IC Exhaust-Heated 5650 Optimal IC Exhaust-Heated

Model 5650 Model
Thermal Efficiency (%) 35.8 40.8
Power Output (kW) 3257 2961
Specific Power 599 .545
Specific Fuel Consumption .2938 2577

(kg/kW-hr)
Table 5.10 Component Performance Comparison
Intercooled Exhaust-Heated Model vs. Optimal Intercooled Model

IC Exhaust-Heated 5650 Model IC Optimal Exhaust-Heated

5650 Model

Inlet Exit Inlet Exit
Compressor
Temp. (K) 288.0 436.9 288.0 373.7
Flow (kg/s) 18.77 18.77 18.77 18.77
Pressure (kPa) 101.3 719.2 101.3 4559
Intercooler
Temp. (K) 406.7 312.6 373.7 3094
Heat-exchanger
Cold Side :
Temp. (K) 436.9 12443 395.6 1243.3
Combustor
Temp. (K) 851.5 1265.0 940.10 1265.0
Flow (kg/s) 17.93 18.18 18.24 18.44
Gas-Producer
Turbine
Temp. (K) 1244 .3 1017.0 1243.3 1086.1
Flow (kg/s) 17.31 17.78 17.62 18.09
Pressure (kPa) 689.36 271.4 436.91 234.52
Power Turbine
Temp. (K) 1007.0 851.5 10754 940.1
Flow (kg/s) 17.78 17.93 18.09 18.24
Pressure (kPa) 266.05 124.6 229.90 124 .88
Heat-Exchanger
Hot Side
Temp. (K) 1265.0 4834 1265.0 449.6
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Table 5.11 Comparison of Regenerator Dimensions and Performance
. Intercooled Exhaust-Heated Model vs. Optimal Intercooled Model

IC Exhaust-Heated Optimal IC Exhaust-

5650 Model Heated 5650 Model
Number of Disks 2 2
Core Type S03A 503A
Effectiveness 0.975 0.975
Diameter of Each Disk (m) 3.5198 3.4688
Thickness of Each Disk (m) 0.1386 1352
Mass of Each Disk (kg) 853.7 808.8
Rotational Speed (RPM) 1.74 1.85
Power Consumption (kW) 11.62 12.02
Total Radial Seal Leakage (% WA1) 3.22 2.06
Total Circumf. Seal Leakage (% WAI1) 1.41 .89
Cold Side
Pressure drop (%) 17 41
Heat-transfer area (m?2) 1467.9 1396.3
Free-face area (m?) 1.351 1.318
Face area (m?2) 1.908 1.861
Hot Side
Pressure drop (%) 3.11 3.08
Heat-transfer area (m?2) 4280.3 4049.5
Free-face area (m?) 3.940 3.821
. Face area (m2) 5.565 5.397
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6.0 Intercooled Design Options
There are three alternatives considered for the modification of the intercooled exhaust-
heated 5650. Two of those options provide the optimal pressure ratio of 4.5 while one

option keeps the original design pressure ratio. These options are:

1. run the modified engine at the existing pressure ratio;

2. design all-new turbomachinery; or

3. make no turbomachinery modifications: just decrease engine speed.
The first option compromises the optimum pressure ratio for economic comparison while
the latter two options attain the optimal pressure ratio determined for the intercooled

version.

6.1 Applicable Nomenclature and Base Engine Data

Nomenclature for both the compressor and turbine velocity diagrams use the notation
found in Wilson {5]and are depicted in figure 6.1 and 6.2. The base-5650-compressor
velocity-diagram data are presented in Table 6.1. Base-compressor dimensions are

presented in Table 6.2.

el +) w2 (+)

Wi C2

[ Q

U (m/s)

Figure 6.1 Compressor Velocity-Diagram Conventions [31]
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Figure 6.2 Turbine Velocity-Diagram Conventions [31]

Table 6.1 Base 5650 Compressor Velocity-Diagram Data

Stage 1 Stage 2

Inlet Exit Inlet Exit

Hub Shroud H Shroud
u (m/s) 132 282 462 118 240 423
C (m/s) 151 151 335 87 87 294
oc(®) O 0 64 0 0 69
W (m/s) 201 319 216 146 225 182
o (°) 41 62 48 53 70 54

Table 6.2 Base 5650 Compressor Dimensions

Stage 1 Stage 2
djp (mm) 193.1 171.4
dis (mm) 410.4 350.0
d; (mm) 673.5 616.8
b, (mm) 29.0 24.1
d; (mm) 743.5 675.9
b3 (mm) 35.0 29.0
d4 (mm) 1042.8 9523
B2(") 40 50
Z 26 26

6.2 Option 1- Run Engine At Original Pressure Ratio

Although this option may seemn trivial , it should provide an economic alternative to the
redesign of all turbomachinery. Table 5.7 and 5.8 previously presented the performance
of this option and compared it to the intercooled base 5650 model developed from the

predicted data provided by Solar. Table 5.7 is again presented below.
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Table 6.3 Overall Performance Comparison
Intercooled Base Model vs. Intercooled Exhaust-Heated Model

IC Base 5650 Model IC Exhaust-Heated 5650
Model
Thermal Efficiency (%) 36.6 35.8
Power Output (kW) 3520 3257
Specific Power .647 .599
Specific Fuel Consumption .2312 .2938

(kg/kW-hr)

The validity of this option will be proven and compared using an economic analysis

model in section 9.0.

6.3 Option 2 - Redesign All Turbomachinery

A second alternative to achieve the optimal pressure ratio for the intercooled exhaust-
heated 5650 involves redesigning all of the turbomachinery. The efficiency of the
redesigned turbomachinery will be maximized at the low-pressure-ratio design point and
presumably will result in better overall engine performance. Option 1 for the intercooled
exhaust-heated engine required simply running the modified engine at its original design
pressure ratio. This avoided the redesign of any turbomachinery Both compressor stages
and both turbines must be redesigned in option 2.

The capital cost of more turbomachinery modifications will be weighed against savings
from performance improvements on a life-cycle basis in section 9.0. In an effort to keep
the flowpath and overall size of the engine as near to the base 5650 design as possible, the
mass-flow rate and turbine-inlet temperature were held constant. The compressor rotational
speed was allowed to vary from the base 5650 design speed but was constrained by the
existing dimensions of the compressor turbine in order to simplify the alteration of this
turbine. The preliminary design of the turbines was accomplished using Tampe’s
TURBINE computer program. The centrifugal-compressor preliminary design was

completed based on procedures in Wilson [5] and lectures by Professor A. D. Carmichael
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in MIT’s Thermal Power Systems course. A second iteration would incorporate a
backswept impeller of about 45 degrees.

Backswept vanes have several advantages over radial vanes in that relative tip velocities
increase while the absolute velocity of the fluid decreases. These velocity changes result in
less stringent diffusion requirements in both the impeller and diffuser which tend to
increase the efficiency of these components. Backswept vanes also provide the compressor
with a wider operating range of air-flow for a given rotational speed, simplifying the match
of the compressor to its driving turbine. One disadvantage of backswept vanes is the
reduction of work-absorbing capacity of the rotor resulting in lower temperature rises as
compared to a similar radial-vaned impeller. This effect is countered by the increased
efficiency of the components [22].

The centrifugal-compressor preliminary design followed the same design constraints as
Nabhatis [31]. The final design assumptions listed in Table 6.4 were compiled by him after

consulting numerous references [32,33,34,35,36].
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Table 6.4 Centrifugal-Compressor Design Assumptions

Overall
N, =RPM QS ) ~0.6
Specific speed © Wan)™
Slip factor 0.9
Isentropic impeller efficiency 92.0 %
Inlet axial velocity uniform from hub to shroud
Inlet swirl none
Impeller
Relative Mach number at shroud inlet minimize
Hub-to-tip ratio at inlet 0.28
Blade exit angle 0°
Vaneless Diffuser
Radius * tangential velocity (R*Cy) constant
Mach number at exit 0.8
Pressure loss distribution equal among diffuser components
Diffuser width equal to impeller exit blade width
Vaned Diffuser
Incidence 0°
Flow entrance angle vaneless diffuser exit angle
Flow exit velocity 1/3 of entrance velocity

Due to the iterative nature of centrifugal-compressor design, a computer program was
developed to execute the calculations. To maintain continuity between intercooled and non-
intercooled versions of this cycle which were completed under the same DOE contract, the
same design constraints were met. For the intercooled cycle, the interstage pressure and
temperature data from the optimized cycle results were used as inputs for the centrifugal-
compressor design. Rotational speed was chosen in order to limit modifications to the
compressor turbine. Loading coefficient was chosen while Pressure ratio and polytropic
efficiency of the compressor stages were taken from the intercooled model. All other

parameters were calculated.
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The design parameters shown in Table 6.5 were the result of optimizing the
intercooled-compressor design using the present dimensions of une compressor turbine as a

constraint in order to avoid unnecessary changes to the casing and blade dimensions there.

Table 6.5 Intercooled Compressor Design Parameters

Stage 1 Stage 2
Speed (RPM) 12500 12500
Pressure Ratio 2.26 2.04
Specific Speed 0.16 0.11
Polytropic Efficiency (%) 87.0 82.0
o1 0.47 0.38
o2 0.62 0.49
v -0.9 -0.9

The results from the program, the final compressor performance and dimensions, are
compared with the base 5650 parameters in Table 6.6. The velocity-diagram data for each
stage are contained in Table 6.7 and a schematic of the two stages is shown in figures 6.3
and 6.4.

Table 6.6 Comparison of Redesigned Compressor Geometry
Intercooled Exhaust-Heated Cycle

Stage 1 Stage 2
Base 5650 Redesign Base 5650 Redesign
djp (mm) 193.1 1344 171.4 136.8
djs (mm) 410.4 404.9 350.0 3235
d; (mm) 673.5 4%0.1 616.8 488.4
by (mm) 29.0 46.2 24.1 28.5
d; (mm) 743.5 543.8 675.9 523.8
b3z (mm) 35.0 46.2 29.0 28.5
d4 (mm) 1042.8 802.6 952.3 726.5
Z 26 20 26 20

4 A second design iteration would incorporate an impeller backswept - rout 45 degrees.
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. Table 6.7 Redesigned Compressor Velocity-Diagram Data
Intercooled Exhaust-Heated Cycle

Stage 1 Stage 2

Inlet Exit Inlet Exit

Hub Shroud Hub Shroud
u (m/s) 88 265 314 90 212 320
C (m/s) 148 148 343 123 123 327
o () 0 0 55 0 0 62
W (m/s) 172 303 197 152 245 159
ow (°) 31 61 9 36 60 12

Figure 6.3 Stage 1 Schematic {Intercooled Compressor)
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Figure 6.4 Stage 2 Schematic (Intercooled Compressor)

The design-point performance- of each centrifugal compressor stage was verified using
Dallenbach’s performance-prediction method which was encoded by Nahatis [26]. The
new stage geometry was entered into the base 5650 data-match computer program. The
resulting efficiency and pressure-ratio prediction for the new geometry compared

reasonably well with design intent (see Table 5.5).

Table 6.8 Intercooled Compressor Desigon Intent vs. Prediction

Efficiency Pressure Ratio

Design Predicted Design Predicted
Stage 1 87.0 89.6 2.21 2.11
Stage 2 82.0 85.3 2.04 2.16

The preliminary design of the turbines was completed in a similar manner as the
turbine designs performed by Nahatis [31]. The preliminary design ot the turbine blading
was carried out with the help of Tampe's TURBINE computer program [16]. The program
uses preliminary constant-hub-diameter design procedures outlined in Wilson [5] with the
final designs meeting criteria advocated by Wilson [37] Data for the original turbine

designs were calculated knowing the rotor and stator dimensions and assuming a reaction
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of .6. The data given in Table 6.9 and shown in the velocity diagrams in figure 6.5 are
provided for comparison purposes with the redesigned turbines at the optimized pressure
ratio. The constant-hub-diameter geometry for the gas-producer turbine is compared with
the base 5650 cylindrical annulus design in Table 6.10. The chosen compressor speed of
12,500 rpm resulted from seeking to minimize the changes to the gas-producer turbine
when running at its modified pressure ratio.

Table 6.9 Mean-Diameter Turbine Velocity-Diagram Data
For Baseline 5650

Gas-Producer Turbine Power Turbine

Inlet Exit Inlet Exit
Rn --- 0.6 - .6
\v —— 20 = 1-6
) — 0.79 -— 0.73
C (m/s) 580 358 453 268
oc () 61 -37 58 -16
W (m/s) 320 644 244 509
ow (°) -27 64 -16 63

Table 6.10 Gas-Producer Turbine Geometry

For Redesigned Intercooled Compressor Option

Base 5650 Redesign

Vane Blade Vane Blade
dy, (mm) 463.6 463.6 463.7 463.7
d; (mm) 589.3 589.3 535.3 555.6
A 0.787 0.787 .866 0.835
A, (m?) 0.1040 0.1040 0.0562 0.0735

The geometry for the power turbine is shown with the base 5650 dimensions in Table
6.11. The power-turbine speed remains the same as the base engine but the pressure ratio
has now been changed due to operation at the chosen optimal pressure ratio. The velocity
diagrams for the redesigned turbines are shown in figure 6.6. A schematic of the

redesigned turbines is presented in figure 6.7.
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SOLAR 5650 TURBINE VELOCITY DIAGRAMS

COMPRESSOR TURBINE

W2e= 6442 m/s

C1=5803m/s

Wi=31
€2=358.0 m/s 1=319.5 m/s

U=361.08 M/'S
RM=H ¢=.79 W=2.ch=285m/3

w2s 508.7.m/s Cl= 4526 m/s

o= 15-5
L4

C2=268.3 m/s W1*243.9 m/s

U=321.6 WS
RN=6 @=.73 y =1.6CX=235m/s

Figure 6.5 Baseline 5650 Turbine Velocity Diagrams (Mean Diameter)
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BEDESIGNED TURBINE VELOCITY DIAGRAMS

COMPRESSOR TURBINE

1
|27 536 m/s Cl=534m/s

C2=322 m/s

Wi=309 m/s
=17

oF 17

U=3349M/S
RN=.51 @ =.90 y=1.63 CX=303 m/s

POWER TURBINE

W2= 498 m/s
Cl= 474 m/s

C2=294m/s
W1=268 m/s

U=3208m/s

AN=.55 ¢ =86 ¢=15 CX=278 m/s

Figure 6.6 Velocity Diagrams for Redesigned Turbines (Mean Diameter)
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Table 6.11 Power-Turbine Geometry For Redesigned Intercooled
Compressor Option

Base 5650

Vane Blade
dp, (mm) 468.6 468.6
d, (mm) 688.2 688.2
A 0.681 0.681
A, (m2) 0.1996 0.1996

Redesign
Vane

500.0
614.7
0.813

0.1004

Blade
500.0
644.7
0.776

0.1301

The mean-diameter velocity-diagram data for the redesigned turbines are shown in Table

Table 6.12 Mean-Diameter Turbine Velocity-Diagram Data
For Redesigned Intercooled Compressor Option

6.12.

Gas-Producer Turbine

Inlet Exit
Rn --- 0.51
v - 1.63
) 0.86 0.90
C (m/s) 534 322
oc(®) 57 -17
W (m/s) 309 536
aw () -22 55
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Power Turbine

Inlet

0.80
474
57
268
-17

Exit
55
1.49
0.86
294
-15
498
55
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Figure 6.7 Turbine Schematic

The design-intent efficiency of both turbines was verified using three turbine efficiency-
prediction techniques: Wilson's exact, the trimmed binomial method, and a method
developed at General Electric [5,38,39]. The results shown in Table 6.13 agree
moderately well with the design-intent polytropic efficiency.

Table 6.13 Design Intent vs. Predicted Efficiency
Intercooled Exhaust Heated Cycle

Design Intent Wilson’s Exact Trim Binom. GE

Gas-Producer
Turbine 88.7 87.9 90.1 890.8
Power Turbine 87.7 89.5 91.7 91.6

The preliminary design of the compressor and both turbines has been completed for the
intercooled exhaust-heated engines. The blading performance and efficiencies have been
estimated to be better than design intent. To be conservative, however, the intercooled

exhaust-heated 5650-engine model use the design-intent efficiencies. The last option which
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will be analyzed involves running the modified engine at reduced speed and involves no

turbomachinery modifications.

6.4 Option 3 - Run Existing Turbomachinery Off-Design

The off-design running of the intercooled, exhaust-heated, coal-burning 5650 with no
turbomachinery modifications is the last option considered to arrive at the optimal pressure
ratio for high thermal efficiency and specific power. This exercise is divided into two
major tasks: determining the off-design performance of the base 5650 turbomachinery and
predicting the off-design characteristics of the rotary regenerator sized in Table 5.5.

The off-design performance of the base 5650 turbomachinery was determined from
actual test data shown in figures 6.8, 6.9, and 6.10 [21]. The data were extrapolated down

to lower pressure ratios based on the assumption that the slopes stayed constant.
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Figure 6.8 Intercooled Solar 5650 Compressor

First Stage Operating Line [21]
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Figure 6.9 Intercooled Solar 5650 Compressor

Second Stage Operating Line [21]
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Figure 6.10 Solar 5650 Turbine Operating Line [21]

The off-design-point characteristics of the rotary regenerator were estimated using
techniques documented in Hagler [19] and Frenkel [15]. The variation of effectiveness

with mass flow through the regenerator is assumed to be linear based on analysis by

Frenkel [15].

The off-design-point-engine performance was calculated for a range of pressures using

a computer program which merged elements from Tampe’s CYCLE program and Frenkel’s

regenerator off-design calculations . The program requires interactive input from the test
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data in figures 6.8 , 6.9 and 6.10 fcr each pressure ratio. The dimensions of the rotary
regenerator, sized at the design-point pressure ratio (Table 5.5), are held constant.

The thermal-efficiency-versus-specific-power characteristic for the off-design-point
running of the irtercooled exhaust-heated 5650 is shown in figure 6.10. A relatively high
thermal efficiency was reached but the power output at such low pressure ratios is too small
for the engine to be economically justifiable. A comparison of thermal-efficiency curves
with design and off-design points reveals that the off-design-point thermal efficiencies
follow design-point values closely at lower and upper extremes (see figure 6.11). These
results depict the improvement in part-load performance that intercooling and regeneration
have on the cycle. These results may then be compared with the part-load performance
comparison that was performed by Nahatis [31] who investigated the non-intercooled
cycle. Whether the increased initial capital expense of the other options is worth the
performance improvement is determined in section 9.0. An overall performance
comparison of the optimal-exhaust-heated 5650 and the off-design-point-exhaust-heated
5650 at a pressure ratio of 4.0 is shown in Table 6.14.

Table 6.14 Overall Performance Comparison
Optimal vs. Reduced Speed (Non-intercooled)

Optimal Design Reduced-Speed Operation
Thermal Efficiency (%) A 38.5 36.8
Power Output (kW) 2490 1479
Specific Power 0.500 0.450
Specific Fuel Consumption 0.2731 0.2859
(kg/kW-hr)
Pressure Ratio 4 4
Mass Flow (kg/s) 17.22 11.34
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Figure 6.11 Thermal Efficiency Comparison
(Intercooled Exhaust-Heated Cycle)

Table 6.15 provides a performance comparison between options 2 and 3 for the

intercooled exhaust-heated modification. Although the reduced-speed (off-design)

thermal efficiency matches that of the turbomachinery redesign option, this is achieved at

a great sacrifice in net power.
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THERMAL EFFICIENCY

Figure 6.12 Reduced-Speed Thermal Efficiency vs. Specific Power

Figure 6.11 shows a comparison between the optimal design-point and the reduced-speed
(off-design) performance of the intercooled exhaust-heated cycle. The reduced-speed

performance curve of the intercooled model operates much closer to its optimal design
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points as compared to the non-intercooled model shown in figure 6.12.
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Table 6.15 Overall Performance Comparison
Optimal vs. Reduced-Speed (Intercooled Exhaust-Heated Cycle)

Optimal Design Reduced-Speed
Thermal Efficiency (%) 40.8 40.9
Power Output (kW) 2961 1875
Specific Power .545 525
Specific Fuel Consumption .2577 2571
(kg/kW-hr)
Pressure Ratio 4.5 4.6
Mass Flow (kg/s) 18.77 12.34

The thermal efficiency and specific fuel consumption are quite comparable but the net
power output of the off-design models is approximately 37% less than the net power of the
optimal design-point model. The reduced mass flow at lower pressure ratios is the primary
reason for the power output deficit. While the thermal efficiency, specific power and
specific fuel consumption of the reduced-speed option look attractive, the absolute power

output is siguificantly below the level reached when new turbomachinery is designed.
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7.0 Increased Turbine-Inlet Temperature

The intercooled exhaust-heated 5650 model was run at the optimal pressure ratio with
increased turbine-inlet temperature to determine the potential benefit to the overall cycle
performance. Solar maintains that more effective gas-producer turbine-blade cooling
would allow the turbine-inlet temperature of the engine to climb from 1241 K to 1339 K.
Although Solar does not mention any other changes, for a conservative estimate the cooling
flow to the gas-producer turbine was increased from 2.5% to 3.5 % and power-turbine
cooling was increased from 0.8% to 1.5 %. The resulting overall performance is compared
to the optimal pressure-ratio, intercooled exhaust-heated 5650 model in Table 7.1.

Table 7.1 1339 T.I.T. Cycle Comparison
Intercooled Exhaust-Heated Cycle

Optimal Exhaust-Heated 1339 K T.LT.

Thermal Efficiency (%) 40.8 43.3
Power Output (kW) 2961 3377
Specific Power 544 0.621
Specific Fuel Consumption 0.2577 0.2427
(kg/kW-hr)

The potential performance benefit from this cycle is enormous. Both power output and
efficiency increase while specific fuel consumption decreases. Although this is true, there
may also be some potential disadvantages to this cycle. The life of some of the uncooled
engine parts may be compromised and the increased coal-firing temperature could lead to a
significant rise in the stickiness of the coal ash which would have an adverse effect on the
regenerator operation. Nevertheless, the prospect of running a more-efficient and-powerful
cycle is noteworthy.

The increase in performance of the intercooled exhaust-heated cycle is very similar to the
increase obtained with the non-intercooled exhaust-heated cycle with TIT raised to 1339 K
[26]. A composite plot of the performance of the various intercooled options and cycle

modifications for each exhaust-heated engine model compared with the base intercooled
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5650 engine is shown in figure 7.1. Three options show better efficiency at less absolute
power output than the respective base 5650 engine. The intercooled exhaust-heated engine
which keeps the same pressure ratio as the original base engine exhibits less power and
efficiency. The increased TIT cycle modification for the optimized, intercooled exhaust-

heated model has significantly higher efficiency and slightly less power. The data will be

THERMAL EFFICIENCY (%)

compared on a life-cycle-cost basis in a following section.
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Figure 7.1 Design Performance of All Intercooled Options
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8.0 REGENERATOR MATRIX SIZING EFFECTS

Cycle analysis runs were completed for the three cores with characteristics shown
below in table 8.1. Revised pressure and mass loss data were incorporated in the
performance calculations and the effectiveness of the cores was chosen in all runs to be
.975. Each run was for the intercooled exhaust -heated cycle with optimized pressure ratio.
Sizing the regenerators follows the Kays and London NTU method in the form used by
Wilson [5]. The program developed by Tampe [16] also calculates the mass flow leakage

across the heat-exchanger seals using the equations developed by Hagler [19].

Core No. (Stanford) S05A S03A 504A
Passage Count, No./in2 526 1008 2215
Hydraulic diameter, um 753 511 327
Area density, m2/m3 4216 5551 7864
Porosity 3 0.794 0.708 0.644
Solid density, kg/m 2259 2259 2259

Table 8.1 Surface Geometry For Three Cores [40]

It may be practical for this cycle to use regenerator cores with larger hydraulic diameters
in order to reduce fouling or decrease the cleaning or replacement intervals of the cores.
Figures 8.1 through 8.4 display changes in regenerator mass, cycle power output, disc
diameter, and disc thickness for cores of different hydraulic diameters, holding

effectiveness for all program runs at .975.
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Figure 8.1 Regenerator Disc Mass Versus Hydraulic Diameter
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Figure 8.4 Cycle Output Power Versus Hydraulic Diameter

From the graphical results it is apparent that thickness and mass are affected the most

when a core of larger hydraulic diameter is chosen for the cycle. Power output and disc

diameter changes are small in comparison. Cycle power output varied for the different

cores due to changes in mass and pressure losses as well as power taken from the cycle to

drive the regenerators. Data from these runs is contained in Table 8.2.

Core Type
504 A

S03A
505A

Table 8.2 Data From Varied Core Runs
Hyd. Diam. Mass/Disc Power (kW) Diam. (M) Thick. (M)

327um 441.2 Kg 29519 3.64 0.055
511pm 808.6 Kg 2960.7 3.47 0.135
753um 1120.5 Kg 2964.4 3.27 0.298
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9.0 ECONOMIC COST-BENEFIT ANALYSIS
The goal of this section is to make an accurate life-cycle-cost assessment of the

intercooled exhaust-heated cycle options in order to determine which project performs the
best from an economic standpoint
9.1 The Life-Cycle-Cost Method

The life-cycle-cost model used in this analysis was developed by R. B. Spector [41] to
evaluate the relative merits of varying types of industrial gas turbines. The following
elements are considered in the model: 1nitial investment cost, cost of financing, variations
in equipment availability, cost of fuel, cost of fuel treatment and/or preparation, direct
operating labox costs and spare parts for preventive and corrective actions. These elements
are contained in the three terms which comprise the production cost: annual investment
cost, annual fuel cost, and annual maintenance cost. The life-cycle-cost equation (9.1)
calculates the average present value cost per kilowatt-hour of electricity generated over the

life of the unit.

1
B 1- (i+1)" F M
= W) (876001G) T 293)(E) T kW 9.1

here,
I- initial capital cost of the equipment ($)
i- interest rate
n- number of payment periods
A- availability (number of hours engine operates/number of hours needed)
kW- number of kilowatts of electricity produced (kW)
G- efficiency of the associated electrical altemator
F- fuel cost ($3/MBTU, HHV basis)
E- thermal efficiency
M- maintenance cost ($/hr)

The accuracy of the method is adequate for the purpose of evaluating the relative costs of

the different options but Spector does not advocate its use to calculate absolute costs.
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9.2 The Life-Cycle Equation Unknowns

The unknowns in the life-cycle equation (7.1) can be divided into two categories: those
terms that vary with engine configuration and those that do not. Engine configurations
have been categorized as either exhaust or direct-heated. The fuel cost, maintenance cost,
availability, interest rate, generator efficiency, and payment periods do not change with
engine configuration considered. The values of these invariants shown in Table 9.1 were
arrived at through a comprehensive search of the literature [3,4,41,42,43]. The base 5650
is an entirely different engine and therefore requires its own set of constants also included
in Table 7.1. Maintenance costs for the exhaust-heated cycles were chosen to be twice that

of a "simple-cycle” gas turbine or equivalent to the maintenance costs of a diesel engine

[44].

Table 9.1 Life-Cycle Calculation Constants

Exhaust-Heated 5650 Base 5650

Fuel Cost ($/MBTU) (Coal) 1.86 (Natural Gas) 2.97
Maintenance ($/k Whr) .01 .005
Availability 0.95 0.98
Interest Rate 0.075 0.075
Periods - 20 20
Generator Efficiency 0.98 0.98

Although optimistic, the cost of coal in this study is $1.86 /MBTU [44]. The actual cost
will depend on how far from the coal source the plant is located and what treatments must
be added to the coal to control the products of combustion. The $2.97 /MBTU fuel cost for
the base 5650 is the current projected price of natural gas [44]. The maintenance cost of the
coal-buming engine is chosen to be double the average cost for industrial gas turbines
because the regenerator and its associated seals and the combustor and cleanup system will
most likely require more frequent servicing than a simple-cycle gas turbine requires (this
may, however, be too conservative) The balance of the terms in the life-cycle equation

(9.1): initial capital cost, kilowatts, and thermal efficiency, vary with engine configuration.
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The initial cost of the Solar 5650 with the exhaust-heated modifications is difficult to
estimate. The cost of the base 5650 unit is not well established because Solar has leased
them, not sold them, and then only to a limited number of pilot sites. A “rough” price for
the Solar 5650 without the recuperator but including installation and generator cost was
obtained from Solar. The price of an intercooler for the two-stage centrifugal compressor
was obtained from Karstensen [21] The cost of the atmospheric-pressure slagging
combustor, fuel system and extra ducting was simply estimated. The regenerator core cost
was arrived at through conversations with a manufacturer and the price of the
turbomachinery modifications was scaled using sample engine data supplied by a gas-
turbine engine manufacturer. The total initial cost of each option examined is broken down

into components in Table 9.2.
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Table 9.2 Initial Production Costs (000 omitted)
Intercooled Exhaust-Heated Models

IC 5650 IC EH 5650 ICEH ICEH IC EH
Redesign Off-Design 1339 K TIT
Base Engine 890.0 890.0 890.0 890.0 890.0
Combustor - 20.0 20.0 20.0 20.0
and Fuel
System
Regen. (2) - 168.8 160.4 160.4 160.4

Recuperator 250.0 --- - - -

Intercoolers 20.0 20.0 20.0 20.0 20.0
Ducting 3.0 8.0 8.0 8.0 8.0
Turbo- —- —_— 111.9 -— 111.9

machinery

Mods
Total Initial 1163 1106.8 1210.3 1098.4 1210.3
Cost

The turbomachinery-modification costs are added to the base engine cost. This
assumes, therefore, that the base 5650 engine is purchased then modified. In addition, the
costs listed are for production and do not include development costs. A new engine design
requires many years and millions of dollars to develop.

On the other hand, the production cost of most itemns decreases rapidly with units made.
The initial and replacement cost of the ceramic heat-exchanger cores seems particularly
open to large price reductions, because they are manufactured generally by an extrusion
process favoring automatic control A summary of the variable life-cycle-cost inputs is

shown in Table 9.3.
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Table 9.3 Life-Cycle Cost Variables

kW E 1(000 omitted)
Base 5650 2770 0.336 1140.0
IC Base 5650 3520 0.363 1163.0
IC EH Base 5650 3257 0.356 1106.8
IC EH Redesign 2961 0.408 1210.3
IC EH Off-Design 1875 0.409 1098.4
ICEH 1339K TIT 3377 0.433 1210.3

The results of inserting the terms from Tables 9.1 and 9.3 into the life-cycle-cost

equation (9.1) are summarized in Table 9.4.

Table 9.4 Life-Cycle Cost Summary ($/kWhr x 10 2)

Capital Cost Fuel Cost Maintenance Life-Cycle Cost
Base 5650 0.113 3.575 0.500 3.997
IC Base 5650 0.385 2.773 0.500 3.678
ICEHBase5650 0.409 1.783 1.000 3.273
ICEH Redesign 0.492 1.556 1.000 3.236
ICEH Off-Des. 0.705 1.552 1.000 4.134
ICEH 1339K 0.4311 1.466 1.000 2.940

Despite having the highest initial cost, the intercooled exhaust-heated engine possesses
the lowest life-cycle cost of all the configurations considered (see figure 9.1). The
turbomachinery redesign is the most cost-effective solution to running the intercooled
exhaust-heated engine at the optimal pressure ratio. The off-design option has the highest
life-cycle cost due to the low power output at the optimal pressure ratio. Running the
intercooled exhaust-heated 5650 at its original desigr: pressure ratio presents a favorable
comparison to the redesign of turbomachinery due to its lower initial capital cost. For the
exhaust-heated engines, increasing turbine inlet temperature produces great economic

benefits over the life-cycle of the engines.
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Figure 9.1 Life-Cycle Cost

The relative cost in $/kW-hr for the ten configurations examined is displayed in figure
9.2. Although the life-cycle fuel cost of the intercooled and non-intercooled base 5650 is
substantially higher relative to all the alternatives, the overall life-cycle cost is low because

initial capital and maintenance costs are small. The off-design options appear too expensive

per kilowatt-hr. to purchase and maintain.
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Figure 9.2 Relative Life-Cycle Cost Composite Charts
(Intercooled Exhaust-Heated Cycles

93 Blue Sky And Optimal Off The Shelf Design Comparison

In a previous report, an optimal "blue Sky" intercooled exhaust-heated engine design
~as developed and evaluated by Tampe [40]. This design is designated CICXEB while the
optimal conversion design of the intercooled-base-5650 is designated ICEH Redesign.

Table 9.5 provides a normalized cost comparison of the two designs.

Table 9.5 Life-Cycle Cost Summary ($/kWhr x 10 2)

. Capital C Fuel C Mai o
ICEH Redesign 0.492 1.556 1.000 3.236
CICXEB 0.648 1.244 1.000 2.893

Table 9.6 compares output power, thermal efficiency, and the initial capital cost of the

respective engines.
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Table 9.6 Comparison of Life-Cycle Cost Variables

kW E |
IC EH Redesign 2961 0.408 1210.3
CICXEB 2000 0.510 1078.0

Finally, Table 9.7 shows the respective component efficiencies for both of the optimized

designs.

Table 9.7 CICXEB and ICEH Redesign Component Comparison

CICXEB ICEH Redesign

Compressor 1st Stage or
Axial Comp. #1

Efficiency (%) 91.8 84.1
Intercooler

Effectiveness .90 902
Compressor 2nd Stage or
Axial Comp. #2

Efficiency (%) 91.8 79.6
Regenerator

Effectiveness 0.975 0.975
Combustor

Efficiency (%) 95 95
Gas-Producer Turbine

Efficiency (%) @ = ----—-- 88.7
Power Turbine

Efficiency (%) 913 87.7

Although normalized capital costs are less for the converted Solar 5650, the initial
engine cost is actually greater due to its larger power output over the CICXEB design. The
thermal efficiency comparison shows that the ICEH Redesign engine performs at a full 10
percentage points less than the optimal "blue sky" design. The reason for this is seen in the
component efficiency comparisons where the differences in polytropic compressor
efficiencies are quite substantial. The CICXEB design incorporated two, 3-stage, axial
compressors while the performance of the ICEH Redesign is modelled after the tested
design performance of the two stage centrifugal compressor found in the Solar 5650

engine. The substantial difference in life-cycle costs is a direct result of the higher
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projected component efficiencies of the "blue sky"” engine. The Probability of attaining
these component efficiencies is much more difficult to assess when compared to the
conversion of an existing engine with documented performance. Conversion and redesign
of the 5650 engine appears to be a lower risk project because of existing components and
and the possibility of a shorter time frame of project completion. This lower risk also
manifests itself with a fairly large sacrifice in efficient performance. A final
recommendation for which design option is most attractive depends greatly upon the level

of risk , available capital, and project duration constraining the project manager.
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10.0 COMBUSTOR RECOMMENDATIONS

As stressed earlier, the major advantage of the exhaust-heated cycle over conventional
direct-fired units is that no products of combustion pass through the turbine. The rotary
regenerator must tolerate the various emissions from the chosen combustor. Still, the
economic viability of this cycle is dependent on using coal in its most inexpensive and
untreated state. Many programs have been primarily investigating coal-water slurry (CWS)
and beneficiated grades of coal. As fuel-treatment costs, and hot-gas-cleanup costs
increase, prohibitively high life-cycle costs could eventually degrade the economic benefits
of using coal over petroleum or natural gas. After researching the various types of
combustors available for the exhaust-heated cycle, one developmental model stands out as a
practical and effective component..

Avco Research Laboratory / Textron (ARL) has been developing and testing a slagging
combustor for use in a direct coal-fired 80 MW gas turbine. It is unique in that standard
utility-grade coal is fed into the primary zone of the combustor using pressurized air. All
the testing has employed pulverized coal which is loaded into a conical bottom tank which
is pressurized with dry nitrogen. The coal is fluidized with nitrogen introduced near the
bottom of the cone. At the outlet of the tank is an orifice through which the coal flow is
metered into a carrier line. Flow rate is then adjusted by altering the pressure difference
between the tank and the carrier line at the orifice [45].

Pretreatment of the coal is practically eliminated and excessive pollutants and particulates
are minimized. This is accomplished by buming the coal at a temperature higher than its
ash melting point and removing the molten slag with an impact separator. The combustor
has a primary rich-bumn zone followed by a secondary lean-burmn zone which produces very
low NOy emissions. A limestone sorbent is injected into the primary zone to control sulfur

oxides.
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Extensive testing of the combustor has led to the conclusion that additional cleanup
stages may be necessary due to some of the particulate emissions which could potentially
erode and foul the turbine in the direct-fired cycle. Currently, particulate and sulfur
reduction has not been reduced to the level required to meet the EPA's New Source
Performance Standards (NSPS) for coal-fired plants. Even if these levels are met, turbine
erosion and fouling will still be an important issue. Alkalinity of the exhaust gases has not
been fully investigated but preliminary analyses of slag samples indicate that approximately
80% of the alkali present in the coal is retained in the slag [46]. Obviously, some of the
stringent constraints required by the direct-fired cycle above and beyond those necessary to
meet pollution standards are reduced or even eliminated by the exhaust-heated cycle if an

effective plan for cleaning or replacing rotary regenerators is implemented.
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11.0 CONCLUSIONS AND RECOMMENDATIONS

This study has demonstrated the technical feasibility and benefits of converting an “off-
the-shelf” gas turbine to an intercooled and non-intercooled exhaust-heated, coal-buming
engine. Thorough cycle analysis produced the optimal pressure ratio for the converted
engines and three options were presented to modify the intercooled and non-intercooled
Solar "base 5650" engine to achieve the desired performance. Each of these options as
well as an increased-turbine-inlet-temperature modification were examined on a life-cycle-
cost basis. To achieve maximum benefit from the exhaust-heated cycle, both intercooling
and increased-turbine-inlet-temperature modifications studied briefly here should be further
scrutinized to determine their feasibility.

There are several areas which need more investigation before a decision could be made
to modify a Solar 5650 engine. A demonstration of ceramic-rotary-regenerator
performance under simulated coal-exhaust conditions is very important to the success of the
engine. The effectiveness, seal leakage, wear, and ash-clogging tendency could all be
quantified with a simple test rig. In addition, more research should be funded for
atmospheric-slagging combustors and ash-clean-up systems. The current DOE emphasis is
on direct-fired gas turbines where combustion occurs under high pressure. These high-
pressure combustors must use coal injected in a coal-water slurry. Atmospheric
combustors, on the other hand, can burn powdered coal and do not need an elaborate fuel-
injection system. Finally, the environmental aspects of coal combustion must be further
examined. Alternative fuels, such as biomass, which could be readily adapted to this cycle
should also be investigated A recent presentation of studies done by Professor J. Beer
concluded that a combination of clean-combustion technologies, energy-efficient power
cycles and selective use of natural gas could provide environmentally safe energy (47].

The combustion technology to guarantee this, however, is still in its infancy.
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APPENDIX 2

Intercooled Exhaust-Heated Cycle
Computer Model
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§150 RE¥ T DELPH, DELPC : HOT, COLD PERCENT PRESSURE DROPS
6360 REM VH, VC = HOT, COLD AIR VELOCITY INSIDE MATRIX
6165 REM IRAT = CONDUCTANCE RATIC

8166 REN LAM : HUB TO TIP RATIC OF THE REGENERATOR

6170 CROT = 3: REM OPTINUM FROM HAGLER'S ARTICLE

6175 IRAT = 1 / 3: REM SELECTED VALUE BASED ON KUMERICAL RUNS
6176 DENMAT = 2258.8

6200 IF CORE = 1 THEN PO = .708
§205 IF CORE = 2 THEN PC = 644
6208 IF CORE = 2 THEN PC = 7Y
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